诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
优衣库大中华区CMO吴品慧:发挥进博会溢出效应 扩大中国市场合作******
【跨国企业在中国】
编者按:
走进在华跨国企业,听外企老总谈“中国式现代化机遇”、释“经济全球化之道”。
中新网11月7日电题:优衣库大中华区CMO吴品慧:发挥进博会溢出效应 扩大中国市场合作
中新财经 左宇坤 石睿
“进博会是一个非常好的平台和机遇,优衣库对中国很有信心,将持续投资。下一步除了以稳健的速度去开拓下沉市场,也将积极拥抱数字化,发挥进博会的溢出效应,扩大中国市场。”
第五届中国国际进口博览会(以下简称“进博会”)期间,迅销集团全球执行董事、优衣库大中华区首席市场官(CMO)吴品慧接受中新财经记者专访时如是表示。
今年是优衣库连续参加进博会的第三年。吴品慧表示,从进博会的早期参与者,到忠实的拥护者,优衣库连年参展体现出对中国市场的信心,也希望通过这一国家级平台不断寻找未来发展的机遇。
访谈实录摘要如下:
1、我们关注到,优衣库已经连续三年参展进博会,今年在进博会打造了千平米公园式展区,请您介绍一下,进博会给优衣库带来了哪些机会?
吴品慧:我们一如既往地珍惜并且想利用好进博会这个平台。进博会强调创新、开放,这也非常契合我们“LifeWear服适人生”的品牌理念。我们希望通过艺术与科学相结合的面料与服饰设计,更好地展现商品的科技、时尚、品质、可持续。
今年的进博会上,响应“新时代,共享未来”的主题,我们通过1000㎡的“LifePark明日乐境”沉浸式公园空间,打造科技·时尚·品质·可持续四大展区,360度沉浸式展示十大系列产品,为应对不断变化的自然及全球社会经济、节能减碳所需,赋能创造美好世界的新未来。同时,优衣库实体直播间首次入驻进博会现场,融合线上线下,希望把进博会展示的商品和体验更好分享给全国消费者。
这三年,从各种巨型商品的展示,到针对中国顾客首发的商品,优衣库的许多新品都是在进博会首次亮相,然后在全国推广。受进博会平台的启发和溢出效应影响,我们能够更好地把科技融入展品、展品变成商品、商品变成爆品,继而针对中国的需求设计出更多元的创新产品,形成一个正向循环。
进博会带来的机会远远不只是当下,更多的是在未来。我们可以针对中国市场提供更多好的意见和洞察,也能联动更多的全球品牌,多方共创、实现共赢。
2、在中国深耕30余年之后,中国成为优衣库全球第二大市场,优衣库在中国经营有哪些成功之道?
吴品慧:优衣库深耕中国三十年,作为中国纺织行业合作规模最大的跨国企业之一,不只是创造了产业链约百万个就业机会,也在助力“中国制造”向“中国质造”不断升级,走向世界。
这三十年里,优衣库前十年是在携手本地供应商,打造供应链;后二十年我们开始进入零售,去做品牌、商品跟门店。这二十年里,优衣库长期稳扎稳打,至今已在全国范围内开设有接近900家门店,遍布200多个城市,且坚持所有门店都是直营店。同时,除了在一二线城市开店,我们也在下沉到三四线城市。
优衣库一直很稳健地布局中国市场发展。这其实也源自优衣库创始人柳井正对中国市场的情感,他经常会和中国的供应商交谈,询问他们的一些建议和反馈,思想也跟着中国市场一起进化成长。
3、如何看待优衣库在中国市场的前景?未来优衣库在中国的投资布局有什么规划?
吴品慧:接下来,在实体的零售投资方面,优衣库将继续加码中国市场,保持每年80家到100家的速度开店。但更重要的是,跟随着中国近几年数字化发展,优衣库也在积极拓展这样的平台。
从最早在互联网上开设第一家官方网络旗舰店,到这几年和社交平台、直播平台非常多的共创,优衣库和优质消费者们,通过服饰开创了新的生活方式和讯息沟通渠道。优衣库也借助中国数字化互联网的飞速发展,探索共赢模式,也把直播等中国的优秀经验引到全世界。
可持续发展是当前一项重要议题。作为致力于全民化的服装品牌,优衣库希望通过商品创新更好地推进可持续发展。
比如说,现在我们有些人会对空调过度依赖,这会造成过度的碳污染以及资源的耗损。优衣库希望通过快干、透气、吸汗的科技面料,让身体和自然更好地共存,通过减少对空调的依赖,减少对资源的消耗。
这是我们倡导的一种新的生活方式。绿色的生活方式不一定是必须要买一件绿色商品,而是可以通过科技设计的运用去爱地球。优衣库也希望做到配合消费者生活,以及跟进市场与政策,去更好地进化。
不管是过去的二、三十年还是未来,我们对中国很有信心,也会持续加大对中国市场的投资。希望通过品牌和商品的引领美好生活方式,与中国市场和消费者共同打造一个共生共赢、共创共续的美好未来。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |